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We describe here a study devoted to the comparison of the relative influence of chlorine, fluorine, and
trifluoromethoxy substituents on the regiochemical outcome of the Diels–Alder reaction. For this
purpose, we examined the behavior of mixed ‘halogenated’ quinones bearing these groups in their cyc-
loadditions with simple dienes. Contrary to the expectation based on its known electronic properties, the
trifluoromethoxy group behaves very much more like a fluorine than a chlorine atom in such reactions.
On the basis on an endo transition state demonstrated here for these additions, we tentatively suggest
that non-bonded interactions are the main factor controlling the regiochemistry.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of quinones.
The trifluoromethoxy group enjoys a great interest among fluo-
rinated group in various applications thanks to its peculiar proper-
ties.1 However, besides the field of aromatic compounds,2 its
chemistry is poorly known mainly because non-aromatic trifluoro-
methyl ethers are far less common than aromatic ones.3,4 It has
been demonstrated that, at least in the aromatic series, its elec-
tronic properties lie between that of a chlorine and a fluorine
atom.2,5 Although some trifluoromethoxy substituted alkenes are
known,4,6 to our knowledge, there is no report on their reactivity
as dienophilic components in Diels–Alder reactions. Here, we pres-
ent our results concerning the regio- and stereochemical outcome
of the Diels–Alder addition of some halogenated quinones with
simple symmetrical dienes, allowing a comparison between ’halo-
gen’ substituents (chloro, fluoro, and trifluoromethoxy).

In order to overcome the leveling effect resulting from the
strong tendency of fluorobenzoquinone to give mainly addition
products toward its hydrogenated side under kinetic conditions,7,8

we selected to study the behavior of mixed ‘halogenated’ quinones
(2-chloro-6-fluoro and 2-chloro-6-trifluoromethoxy benzoquinon-
es) toughed to enable a finer analysis of the relative effects of these
halogen atoms.

Quinones 3 were readily obtained by selective ortho chlorina-
tion of phenols 19,10 followed by direct oxidation of chlorophenols
2 with sodium chlorite in an acidic medium using our earlier de-
scribed method for trifluoromethylphenols (Scheme 1).11

Oxidation of 2-chloro-6-fluorophenol 2a proved to be highly
exothermic and was consequently performed at �10 �C instead
ll rights reserved.
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wski).
of 0 �C. Quinones 3a and 3b were obtained, respectively, in 31%
and 53% yield.12 Their Diels–Alder reactions with dimethylbutadi-
ene 4 or cyclopentadiene 7 occurred smoothly in dichloromethane
at room temperature over 24 h.13 After removal of the solvent, the
adducts were obtained in essentially quantitative crude yields as a
mixture of regioisomers 5 and 6 (or 8 and 9, respectively)14 (Table
1). These adducts proved unstable under the light as well as under
slightly acidic conditions, but can be kept safely at low tempera-
ture in the dark for several weeks. Attempted chromatographic
separations resulted in considerable decomposition and loss of
material.15

Structure determination relied primarily on NMR spectroscopy.
The distinction between the regioisomers derived from fluoroqui-
none 3a was straightforward: signals for the vinylic fluorine atoms
in 5a and 8a appeared at �109.5 and �107.0 ppm in the 19F NMR
spectra (compare with �110.2 ppm for quinone 3a), whereas those
for tertiary fluorine atoms in 6a and 9a were found at �153.2 and
�141.7 ppm. Moreover, the vinylic hydrogen atoms (H3 in 5a and
H7 in 8a) showed a coupling constant in the range 11–12 Hz with
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Table 1
Regioselectivity of the cycloadditions
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Entry X (quinone 3) Diene Adducts (ratio)

1 F (3a) 4 5a:6a (95:5)
2 OCF3 (3b) 4 5b:6b (91:9)
3 F (3a) 7 8a:9a (78:22)
4 OCF3 (3b) 7 8b:9b (80:20)
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Figure 2. Partial (tertiary protons region) 1H NMR spectrum (C6D6, 300 MHz) of
adducts mixture 8b and 9b.
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the vinylic fluorine atom, while these nuclei appeared as broad sing-
lets or faint doublets in adducts 6a and 9a. As expected, the fluorine
chemical shift difference between the adducts bearing a trifluoro-
methoxy group was less clear cut, but remained sufficiently large
to discriminate a vinylic OCF3 (d�58.6 to�58.8 ppm) from a tertiary
OCF3 group (d �51.6 to �52.2 ppm). Again these assignments were
corroborated by the coupling pattern of the vinylic atoms appearing
as quadruplets (JFH ca. 2 Hz) in 5b and 8b, and as singlets in 6b and
9b. Based on these assignments, and the relative integration of the
vinylic protons in the 1H NMR spectra, the regiochemical outcome
of the Diels–Alder reactions studied here is presented in Table 1.

It is clearly apparent from the data gathered in Table 1 that the
trifluoromethoxy group, in these cycloadditions, behaves very
much like a fluorine than a chlorine atom. Adducts 5 and 8 bearing
the chlorine atom in a tertiary position are predominantly ob-
tained. The selectivity observed is somewhat lower with the more
reactive cyclopentadiene and noticeably reversed between fluorine
and trifluoromethoxy substituents.

In the case of cyclopentadiene adducts, the problem of the endo
versus exo addition of quinones had to be resolved. Usually Diels–
Alder reactions of common quinones occur exclusively via an endo
transition state.16 It has been reported, however, that some fluori-
nated dienophiles8,17 gave sometimes the products arising from an
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Figure 1. Partial (tertiary protons region) 1H NMR spectrum (C6D6, 300 MHz) of
adducts mixture 8a and 9a.
exo transition state. 1H NMR spectra run in CDCl3 were useless for
this purpose, very important signals from H1, H4, and H8a being
highly crowded in a very narrow range (3.5–3.6 ppm). Spectra
run in C6D6 were more informative, signals from H8a could be
unambiguously located in all adducts (8a, d = 3.06; 9a, d = 2.74;
8b, d = 3.06; 9b, d = 3.14 ppm)18 and appeared as clean doublets
with a coupling constant in the range 3.9–4.4 Hz with H1 (see
Figs. 1 and 2).19 Such a coupling constant is highly diagnostic of
an exo position for H8a.20 Consequently all cycloadditions with
cyclopentadiene reported here occurs via the usual endo transition
state.

Considering the very mild conditions used, it can be safely
assumed that no retro Diels–Alder reactions occurred during these
cycloadditions. The ratio of regioisomers shown in Table 1 con-
cerns thus primary adducts and not an equilibrated mixtures of
regioisomers. On this ground, the regioselectivity observed in these
normal electron demand Diels–Alder reactions seems somewhat
amazing. Based on electronic arguments alone (inductive and res-
onance effects of the substituents),2 we should have observed an
intermediate behavior of the trifluoromethoxy group lying some-
where between that of a chlorine or a fluorine atom but not so
close to the latter.21

If an endo transition state could be assumed, as deduced above
for cyclopentadiene, during reactions of both dienes studied here,
it may be speculated that a chlorine atom may experience more se-
vere interactions with the diene substituents in such transition
state than the smaller fluorine atom. This may explain the results
observed with chlorofluorobenzoquinone 3a. But could this expla-
nation also apply for the presumably bulkier trifluoromethoxy
group? Obviously the Van der Waals volume of OCF3 could be con-
sidered far bigger than that of a fluorine atom. However, the con-
formational degree of freedom exhibited by the ether linkage,
may largely compensate this bulkiness handicap in some selected
situations.22 Moreover, contrary to the methoxy group, the OCF3

substituent is known to adopt a perpendicular position out of the
plane of an aromatic ring.1,6,23 One can tentatively assume that this
situation also hold for the case of trifluoromethoxybenzoquinones.
On this basis, it can be presumed that steric interactions with a tri-
fluoromethylether are mainly restricted to the oxygen atom.24

Knowing the nearly isosteric relationship between fluorine and
oxygen,25 we propose that, under such conditions, the trifluoro-
methoxy group and the fluorine atom behave similarly, their
comparable steric requirements overwhelming the relatively small
disparity of their electronic properties.

We tried to rationalize these unexpected results by FMO calcu-
lations. In fact, such kind of computations have been performed
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with some success on related fluorinated systems (but not includ-
ing the trifluoromethoxy group).26 Our own FMO calculations at
the B3LYP/6-31G* level gave qualitative results in accordance with
the experimental results for quinone 3a but failed with the triflu-
oromethoxy substituted quinone 3b. Indeed, very recently, Lemal
caution for the risk associated with such ‘prediction about reaction
pathways’ for Diels–Alder reactions of o-Fluoranil.27

Thus, to date, explanations developed above may be considered
highly speculative and will constitute a challenge for more sophis-
ticated calculations.

Nevertheless, we have shown in this work, that in the Diels–Al-
der reaction of benzoquinones with simple dienes, the trifluoro-
methoxy group behaves like a fluorine twin. We think that these
results may prove highly useful for those who plan to introduce
an OCF3 group in a molecule by the means of a Diels–Alder
reaction.
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8a-Chloro-2-fluoro-6,7-dimethyl-4a,5,8,8a-tetrahydro-[1,4]naphthoquinone (5a)
(major isomer): 19F NMR (CDCl3, 188 MHz) d: �109.5 (ddd, J = 10.9, 2.9,
1.6 Hz). 1H NMR (CDCl3, 300 MHz) d: 6.34 (ddd, 1H, J = 10.9, 1.3, 0.8 Hz), 3.42
(dddd, 1H, J = 10.9, 9.5, 7.3, 1.4 Hz), 3.02 and 2.48 (AB system, 2H, J = 16.9 Hz),
2.2–2.4 (m, 2H), 1.64 (m, 3H), 1.57 (m, 3H). 13C NMR (CDCl3, 75 MHz) d: 195.1
(d, J = 13 Hz), 183.6 (d, J = 22 Hz), 160.3 (d, J = 296 Hz), 122.7, 123.3, 116.6 (d,
J = 8 Hz), 67.4 (d, J = 5 Hz), 55.7, 38.8 (d, J = 2 Hz), 33.3, 18.5, 17.9. HRMS:
calculated for C12H12

35ClFO2 242.0504; found 242.04996 d �2.0 ppm.
2-Chloro-8a-fluoro-6,7-dimethyl-4a,5,8,8a-tetrahydro-[1,4]naphthoquinone (6a)

(minor isomer): 19F NMR (CDCl3, 188 MHz) d: �153.2 (ddd, J = 29.5, 19, 9 Hz).
1H NMR (CDCl3, 300 MHz) d: 7.05 (s, 1H); other signals are obscured by signals
from the major isomer. 13C NMR (CDCl3, 75 MHz) d: 192.1 (d, J = 10 Hz), 187.3
(d, J = 21 Hz), 145.8 (d, J = 3 Hz), 137.6, 123.7 (d, J = 1 Hz), 120.0 (d, J = 2 Hz),
94.3 (d, J = 191 Hz), 51.6 (d, J = 21 Hz), 36.0 (d, J = 24 Hz), 27.7 (d, J = 2 Hz), 18.4.
8a-Chloro-2-trifluoromethoxy-6,7-dimethyl-4a,5,8,8a-tetrahydro-[1,4]naphtho-
quinone (5b) (major isomer): 19F NMR (CDCl3, 188 MHz) d: �58.6 (d, J = 2.3 Hz).
1H NMR (CDCl3, 300 MHz) d: 6.39 (m, 1H); 3.46 (ddd, 1H, J = 10.0, 7.1, 1.3 Hz);
3.05 and 2.51 (AB system, 2H, J = 17.2 Hz), 2.2–2.5 (m, 2H); 1.67 (br s, 3 H);
1.60 (br s, 3H). 13C NMR (CDCl3, 75 MHz) d:194.8, 183.2, 149.7 (q, J = 1 Hz),
123.7, 122.5, 120.1 (q, J = 264 Hz), 119.7 (q, J = 1 Hz), 67.5, 55.5, 39.1, 33.7, 18.6,
18.0. HRMS: calculated for C13H12

35ClF3O3 308.0422; found 308.04207 d
�0.3 ppm.
2-Chloro-8a-trifluoromethoxy-6,7-dimethyl-4a,5,8,8a-tetrahydro-[1,4] naphthoq-
uinone (6b) (minor isomer): 19F NMR (CDCl3, 188 MHz) d: �52.2 (d, J = 1.3 Hz).
1H NMR (CDCl3, 300 MHz) d: 6.94 (q, 1H), 3.36 (br t, 1H, J = 7.7 Hz), 2.86 (d, 1H,
J = 17.3 Hz), 1.62 (br s, 3H) other signals are obscured by signals from the major
isomer. 13C NMR (CDCl3, 75 MHz) d: 193.2, 186.0, 145.2, 136.0, 121.7, 122.7,
84.9, 52.5, 35.6 (q, J = 1 Hz), 31.1, 18.7, 18.2.
4a-Chloro-6-fluoro-1,4,4a,8a-tetrahydro-1,4-methano-naphthalene-5, 8-dione (8a)
(major isomer): 19F NMR (CDCl3, 188 MHz) d: �107.0 (d, J = 11.1 Hz). 1H NMR
(CDCl3, 300 MHz) d: 6.43 (d, 1H, J = 11.1 Hz), 6.19 (dd, 1H, J = 5.7, 2.5 Hz), 6.04
(dd, 1H, J = 5.7, 3.1 Hz), 3.60–3.50 (m, 3H), 2.08 (br d, 1H, J = 9.5 Hz), 1.85 (dt,
1H, J = 9.5, 1.6 Hz). 1H NMR (C6D6, 300 MHz) d: 5.68 (d, 1H, J = 11.4 Hz), 5.57
(dd, 1H, J = 5.7, 2.8 Hz), 5.44 (dd, 1H, J = 5.6, 3.1 Hz), 3.25 (m, 1H), 3.06 (d, 1H,
J = 3.9 Hz), 2.98 (m, 1H); 1.52 (br d, 1H, J = 9.5 Hz), 1.18 (dt, 1H, J = 9.5, 1.6 Hz).
13C NMR (CDCl3, 75 MHz) d: 194.5 (d, J = 14 Hz), 185.0 (d, J = 21 Hz), 162.9 (d,
J = 296 Hz), 138.7, 134.6, 122.1 (d, J = 10 Hz), 68.4 (d, J = 6 Hz), 62.8, 55.1 (d,
J = 2 Hz), 47.8, 47.1. HRMS: calculated for C11H8

35ClFO2 226.0191; found
226.01808 d �4.7 ppm.
6-Chloro-4a-fluoro-1,4,4a,8a-tetrahydro-1,4-methano-naphthalene-5, 8-dione (9a)
(minor isomer): 19F NMR (CDCl3, 188 MHz) d: �141.7 (dd quint, J = 28.2, 6.6,
2 Hz). 1H NMR (CDCl3, 300 MHz) d: 6.95 (s, 1H), 6.27 (dt, 1H,J = 5.6, 2.3 Hz),
5.26 (dt, 1H, J = 5.6, 2.2 Hz), 3.42 (m, 1H), 3.26 (dd, 1H, J = 28.2, 4.0 Hz); 2.00
(dq, 1H, J = 9.4, 1.4 Hz), 1.82 (dq, 1H, J = 9.4, 1.5 Hz). 1H NMR (C6D6, 300 MHz)
d: 6.28 (s, 1H), 5.62 (dt, 1H, J = 5.8 Hz, J = 2.3 Hz), 5.96 (dt, 1H, J = 5.7 Hz,
J = 2.9 Hz), 3.12 (m, 1H); c.a. 2.96 (m, 1H), 2.74 (dd, 1H, J = 28.5 Hz, J = 4.0 Hz),
c.a. 1.49 (m, 1H); c.a. 1.18 (m, 1H). 13C NMR (CDCl3, 75 MHz) d: 193.2 (d,
J = 5 Hz), 185.8 (d, J = 21 Hz), 148.8 (d, J = 4 Hz), 140.8 (d, J = 3 Hz), 140.6, 132.1
(d, J = 8 Hz), 97.3 (d, J = 201 Hz), 58.1 (d, J = 21 Hz), 53.0 (d, J = 24 Hz), 47.3 (d,
J = 2 Hz), 47.0. HRMS: calculated for C11H8

35ClFO2 226.0191; found 226.01826
d �3.9 ppm.
4a-Chloro-6-trifluoromethoxy-1,4,4a,8a-tetrahydro-1,4-methano-naphthalene-5,8-

dione (8b) (major isomer): 19F NMR (CDCl3, 188 MHz) d: �58.6 (d, J = 2.1 Hz).
1H NMR (CDCl3, 300 MHz) d: 6.51 (q, 1H, J = 2.1 Hz), 6.23 (dd, 1H, J = 5.6,
2.1 Hz), 6.07 (dd, 1H, J = 5.6, 3.0 Hz), 3.68—3.43 (m, 3H); 2.11 (br dq, 1H, J = 9.6,
ca 1Hz), 1.87 (br dt, 1H, J = 9.6, 1.7 Hz). 1H NMR (C6D6, 300 MHz) d: 6.11 (q, 1H,
J = 1.8 Hz), 5.61 (dd, 1H, J = 5.7, 2.8 Hz), 5.50 (dd, 1H, J = 5.7, 3.1 Hz), 3.26 (m,
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